【摘要】由于"互联网+"提出的,网络信息呈现爆炸的趋势。面对海量数据如何准确找到热点事件成了网民关注的话题。文章从实际应用出发,首先对每一篇文本选取5句话作为该文本关键句,然后用TF-IDF计算特征词值,特征向量选择时不考虑单个字的权重,再用K-means算法进行聚类。以新浪新闻为例,将环境、住房和违法三类话题共322篇文本作为测试语料进行聚类,聚类准备率达到70%以上,说明选取关键句比将整个文本作为聚类对象的聚类效果好。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中外医疗》 2015-07-03
《现代制造技术与装备》 2015-07-06
《重庆电子工程职业学院学报》 2015-07-02
《重庆电子工程职业学院学报》 2015-07-02
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点